Practical key recovery attack against APOP, an MD5 based challenge response authentication. By Gaetan Leurent

Presented by:-Raagi Sukhlecha Lalit Agarwal

Guided By:-Prof. Anish Mathuria

Outline

- Introduction
 - APOP What is APOP and how does it work ?
 - MD-5 hashing algorithm
- APOP Attack
 - Abstract
 - Wang's attack on MD-5
 - Algorithm by Gaëtan Leurent
 - APOP Attack complexity
- APOP in practice

What is APOP ?

- Improvement to POP 3 which supported plain text password
- APOP Provides simple challenges response authentication and avoids passive eavesdropping attack.
- It only does client authentication. No server authentication.

Example

According to RFC 1939,

- The challenge should be enclosed with in <> with exactly one@ in between.
- 2. The remaining characters should be ASCII.
- 3. Inside the message-id, all characters are accepted, except:-
 - 1. 0x00 Null
 - 2. Ox3e Greater than Sign ('>')
 - 3. Ox0a Line-Feed
 - 4. Ox0d Carriage Return

MD-5 – Working

- Hashing algorithm; uses Merkle damgard construction
- Message blocks of 512 bits and initialization vector IV of 128 bits.
- Uses bitwise functions
 - additions mod 2^{32} : +
 - Boolean functions: f_i
 - Rotations : << s_i

Consider a message M

 $M \xrightarrow{\text{padding}} b_0 | b_1 | b_2 \dots | b_n$ where $|b_i| = 512$ bits

g - compression function

MD-5 – Working (cont.)

Round 0

Where IV is broken into 4 32 bit words $Q_{-4} Q_{-1} Q_{-2} Q_{-3}$ Q_i is the output of each step i (0<= i <=63)

MD-5 – Working (cont.) - A MD-5 step

where

- s_i and K_i as predefined constant
- π(i) is permutation applied to input blocks
- f_i as functions defined as

$$f_i(A, B, C) = \begin{cases} F(A, B, C) & \text{if } 0 \le i \le 15\\ G(A, B, C) & \text{if } 16 \le i \le 31\\ H(A, B, C) & \text{if } 32 \le i \le 47\\ I(A, B, C) & \text{if } 48 \le i \le 63. \end{cases}$$

 $F(A, B, C) = (A \land B) \lor (\neg A \land C)$ $G(A, B, C) = (A \land C) \lor (B \land \neg C)$ $H(A, B, C) = A \oplus B \oplus C$ $I(A, B, C) = B \oplus (A \lor \neg C)$

Basic Equation

Basic equations $\begin{array}{c}
 \hline Q_{i-4} & Q_{i-3} & Q_{i-2} & Q_{i-1} \\
 \hline \varphi_i & \varphi_i & \varphi_i \\
 \hline \varphi_{i-3} & Q_{i-2} & Q_{i-1} & Q_i \\
 \hline Q_{i-3} & Q_{i-2} & Q_{i-1} & Q_i \\
 \hline Q_{i-3} & Q_{i-2} & Q_{i-1} & Q_i \\
 \hline Q_{i-4} & Q_i & \varphi_i \boxplus m_i \boxplus k_i \\
 \hline Q_{i-4} & = Q_i \gg s_i \boxplus \varphi_i \boxplus m_i \boxplus k_i \\
 \hline m_i & = Q_i \gg s_i \boxplus Q_{i-4} \boxplus \varphi_i \boxplus k_i
\end{array}$

If Q_i , Q_{i+1} , Q_{i+2} , Q_{i+3} are known, then we can compute Q_{i+4} .

Here we compute \mathbf{Q}_{10} from \mathbf{Q}_{6} , \mathbf{Q}_{7} , \mathbf{Q}_{8} , \mathbf{Q}_{9} and \mathbf{m}_{10} .

Basic Equation

If Q_{i+1} , Q_{i+2} , Q_{i+3} , Q_{i+4} are known, then we can compute Q_i .

Here we compute \mathbf{Q}_6 from \mathbf{Q}_7 , \mathbf{Q}_8 , \mathbf{Q}_{9} , \mathbf{Q}_{10} and \mathbf{m}_{10} .

Basic Equation

If $Q_i - Q_{i-4}$ are known then we can compute m_i .

Here we compute $\mathbf{m_{10}}$ from \mathbf{Q}_6 and \mathbf{Q}_{10} .

APOP Attack

- Abstract
- Wang's Attack
 - Wang's attack on MD-4 and MD-5
 - Problem with Wang's attack
- Algorithm by Gaëtan Leurent
- Message freedom
- APOP Attack Complexity

Abstract of the attack

- Goal:- To recover some characters of the client's password
- Attacker impersonates server and sends crafted challenge

Abstract of the attack (cont.)

 Attacker sends challenges in such a way that hashed responses will collide if the part of the password was rightly guessed

Attack

To test the first password character, the attacker will construct pairs to test each of the 256 ASCII values .

Note:- The collision is unlikely if $p_0 != x$?

Attack (cont.)

Both hashes collide if $p_1 = y$ To test the second password character, pairs to test 256 ASCII values have to be constructed

Questions ?????

- How can we fix the last message word ?
- Does that mean that we can recover the entire message ? If not how many characters can we recover .
- What will be the time complexity of it ?
- Can APOP be still used ?
- APOP being an offline protocol , is this attack meaningful ?

- In 2004, Xiaoyun Wang published a MD5 collision.
 Did not reveal anything about the attack.
- Determined two 1024-bit messages

 $M' = (M'_0, M'_1)$ and $M = (M_0, M_1)$ where M_0' , M_1' , M_0 , M_1 are each 512-bit blocks. So that MD5 hashes of the two messages are the same

$$\begin{array}{c|c} IV_0 & IV_1 \\ \hline M_0 & \hline M_1 \\ \hline M_0' & \hline M_1' \\ \hline M_0' & \hline M_1' \\ \hline M_1' \\ \hline \end{array}$$
 Identical
MD5 value

 Reverse engineering – revealed many aspects of attack; improvements in attack

Modular Difference, Δy

Consider bytes

y' = 00010101 and y = 00000101

z' = 00100101 and z = 00010101

Note that

y' - y = z' - z = 00010000 = 24

Then wrt modular subtraction, these pairs are indistinguishable.

Signed difference, $\nabla y=y'-y$

```
Denote y'_i=1, y_i=0 as "+"
Denote y'_i=0, y_i=1 as "-"
Denote y'_i=y_i as "."
Consider bytes
z' = 10100101 and z = 10010101
Then \nabla z is "..+-...."
It is more restrictive than modular subtraction.
```

• Step 1: Specify Input Differential Pattern

Applies to input M and M'.Uses Modular Difference.

 $\Delta M_0 = M'_0 - M_0 = (0,0,0,0,2^{31},0,0,0,0,0,0,0,2^{15},0,0,2^{31},0)$ $\Delta M_1 = M'_1 - M_1 = (0,0,0,0,2^{31},0,0,0,0,0,0,0,0,-2^{15},0,0,2^{31},0)$

- Note: M'_0 and M_0 differ only in words 4, 11 and 14
- Note: M'₁ and M₁ differ only in words 4, 11 and 14
- Now, we only need to find M. Then M' can be determined by the differential.

$$M'_0 = M_0 + \Delta M_0$$
 and $M'_1 = M_1 + \Delta M_1$

Input vector 1:

d1	31	dd	02	c5	еб	ee	c4	69	3d	9a	06	98	af	f9	5c
2f	ca	b5	87	12	46	7e	ab	40	04	58	3e	b8	fb	7f	89
55	ad	34	06	09	f4	b3	02	83	e4	88	83	25	71	41	5a
08	51	25	e8	f7	cd	c9	9f	d9	1d	bd	f2	80	37	3c	5b
d8	82	3e	31	56	34	8f	5b	ae	6d	ac	d4	36	c9	19	c6
dd	53	e2	b4	87	da	03	fd	02	39	63	06	d2	48	cd	a0
e9	9f	33	42	Of	57	7e	e8	ce	54	b6	70	80	<mark>a</mark> 8	0d	1e
сб	98	21	bc	b6	a8	83	93	96	f9	65	2b	6f	f7	2a	70
Inpu	t vecto	or 2:													
d1	31	dd	02	c5	e6	ee	c4	69	3d	9a	06	98	af	f9	5c
2f	ca	b5	07	12	46	7e	ab	40	04	58	3e	b8	fb	7f	89
55	ad	34	06	09	f4	b3	02	83	e4	88	83	25	f1	41	5a
08	51	25	e8	f7	cd	c9	9f	d9	1d	bd	72	80	37	3c	5b
d8	82	3e	31	56	34	8f	5b	ae	6d	ac	d4	36	c9	19	C6
dd	53	e2	34	87	da	03	fd	02	39	63	06	d2	48	cd	a0
e9	9f	33	42	Of	57	7e	e8	ce	54	b6	70	80	28	0d	1e
сб	98	21	bc	b6	a8	83	93	96	f9	65	ab	6f	f7	2a	70

Identical MD5 value: 79054025255fb1a26e4bc422aef54eb4

• Step 2: Specify Output Differential Pattern

- \succ Applies to intermediate values, Q'_i and Q_i
- > Uses signed difference. Hence very restrictive.
- > Most mysterious part of the attack.

j	Output	W_{j}	ΔW_j	$\Delta Output$	$\nabla Output$
4	Q_4	X_4	2^{31}	6	
5	Q_5	X_5	0	$3\dot{1}2\dot{3}\ddot{6}$	+ +
6	Q_6	X_6	0	$\bar{27}\bar{23}\bar{6}\bar{0}$	++++++
7	Q_7	X_7	0	$\overline{23}$ $\overline{17}$ $\overline{15}$ $\overline{0}$	+
8	Q_8	X_8	0	$\stackrel{+}{31}\stackrel{-}{6}\stackrel{+}{0}$	+++-

- j determines the step number
- Q_i are outputs for M₀
- ΔW_i are input (modular) differences
- $\Delta Output$ is output modular difference
- \(\nabla Output is output signed ("precise") difference

• Step 3: Derive a set of sufficient conditions

		Number			
Q_2		0	0	.0	3
Q_3	1	0~~~1~~~	1	^011	21
Q_4	1000100.	010000	00000000	0010.1.1	27
Q_5	0000001^	01111111	10111100	0100^0^1	32
Q_6	00000011	11111110	11111000	00100000	32
Q_7	00000001	110001	0.0.0101	01000000	28
Q_8	11111011	10000	0.1^1111	00111101	28
Q_9	0111	011111	11010	0100	19
Q_{10}	00100000	10001	11000000	11000010	29
Q_{11}	00000	1000	00011	0	15
Q_{12}	0101	1111	1110	01	14
Q_{13}	0.000	1011	1111	11	14
Q_{14}	0.101	0	1	0	7
Q_{15}	0!1	!.			4
Q_{16}	0!	0.	^		5
Q_{17}	0. ^	1.			3
Q_{18}	0	0.			2
Q_{19}	0	!			2
Q_{20}	0	^.			2
		/		Subtotal	287

- Step 4: Find a set of messages which satisfy all the conditions in step3.
 - ➢ Generate random 512-bit M₀
 - Modify the message so that all the conditions hold.
 - \succ Follow similar procedure to find M₁
 - \succ Compute M'₀ and M'₁ using

$$M'_0 = M_0 + \Delta M_0$$
 and $M'_1 = M_1 + \Delta M_1$

Now H(M) = H(M')

6	
<i>m</i> ₀	1
<i>m</i> ₁	1
<i>m</i> ₂	1
<i>m</i> ₃	1
<i>m</i> ₄	1
<i>m</i> 5	1
<i>m</i> 6	1
<i>m</i> 7	1
<i>m</i> 8	1
<i>m</i> 9	1
<i>m</i> ₁₀	1
<i>m</i> ₁₁	1
<i>m</i> ₁₂	1
<i>m</i> ₁₃	1
<i>m</i> ₁₄	1
<i>m</i> ₁₅	1

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Select a message m_i
- Compute the corresponding Q_i
- Modify Q_i to satisfy the conditions. Recompute m_i

- Compute Q_i.
- Modify Q_i and recompute m_i
- Recompute Q_i's and m_i's in the first round.

- Compute Q_i.
- Modify Q_i and recompute m_i
- Recompute Q_i's and m_i's in the first round.

- Compute Q_i.
- Modify Q_i and recompute m_i
- Recompute Q_i's and m_i's in the first round.

- Compute Q_i.
- Modify Q_i and recompute m_i
- **Recompute Q**_i's and m_i's in the first round.

- Compute Q_i.
- Modify Q_i and recompute m_i
- Recompute Q_i's and m_i's in the first round.

Problem with Wang's Attack

- Due to the message modification technique, the colliding block cannot be chosen and look random.
- Hence there is no message freedom.
- Also since the exact approach of this attack is not yet known, it is not possible to establish an attack with a given message difference.
A New Approach to Collision Finding

- We will assume that we are given the set of conditions on the internal state variables Q_i that produces collision.
- We will try to find a message M such that when one computes a hash of this message, the conditions on Q_i's hold.

Tunnels

- Introduced by V. Klima in 2005.
- It speeds up the collision search
- Point of verification (p_v) is the step where we will start using tunnels.
- Point of choice (p_c) is the first step whose conditions will not be satisfied deterministically.
- A tunnel is a message modification technique that does not affect the conditions upto p_v-1 (point of verification).

The Method

- We will start fixing Q_i from the middle. (will allow us to deal with the first round and the beginning of the second round simultaneously)
- We will choose the Q_i 's till the step p_c .
- We will compute the Q_i 's from the previous Q_i 's for the steps p_c to p_v .
- Using the tunnels, we will try all possible messages that satisfies all the conditions from p_v till the end of the round.

p_c and p_v in MD4

 m_0

 m_1

 m_2

 m_3

 m_4

 m_5

m₆ m₇

 m_8

 m_9

 $m_{10} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{14}$

 m_{15}

	Q_{-4}
	Q_3
	Q_{-2}
	Q_{-1}
1c	Q_0
3c	Q_1
3c	Q_2
5c	Q_3
5c	Q_4
5c	Q_5
6c	Q_6
4c	Q_7
4c	Q_8
4c	Q_9
4c	Q ₁₀
5c	<i>Q</i> ₁₁
6c	<i>Q</i> ₁₂
6c	Q ₁₃
6c	<i>Q</i> ₁₄
6c	Q15

	m_0	
ĺ	m_4	
	<i>m</i> 8	
	<i>m</i> ₁₂	
	m_1	
	<i>m</i> 5	
	m_9	
	<i>m</i> ₁₃	
	m_2	
3	<i>m</i> ₆	
	<i>m</i> ₁₀	
1	m_{14}	

m ₀	
<i>m</i> ₁	
<i>m</i> ₂	
<i>m</i> ₃	
<i>m</i> ₄	
m ₅	
m ₆	
<i>m</i> 7	
<i>m</i> 8	
<i>m</i> 9	
<i>m</i> ₁₀	
<i>m</i> ₁₁	
<i>m</i> ₁₂	
<i>m</i> ₁₃	
<i>m</i> ₁₄	
<i>m</i> ₁₅	

Approach

• Choose Q_i

• Choose m_i

Approach

• Choose Q_i

<i>m</i> 0	
<i>m</i> ₁	
m ₂	
<i>m</i> ₃	
<i>m</i> ₄	
<i>m</i> ₅	
<i>m</i> ₆	
<i>m</i> ₇	
m ₈	٦
m ₉	
<i>m</i> ₁₀	
<i>m</i> ₁₁	
<i>m</i> ₁₂	
<i>m</i> ₁₃	
<i>m</i> ₁₄	
<i>m</i> 15	٦

Approach

• Choose Q_i

Approach

• Choose Q_i

<i>m</i> 0	
m_1	
<i>m</i> 2	
<i>m</i> ₃	
<i>m</i> ₄	
<i>m</i> 5	٦
m ₆	
<i>m</i> 7	
m ₈	٦
m_9	٦
m_{10}	٦
<i>m</i> ₁₁	
<i>m</i> ₁₂	
<i>m</i> ₁₃	٦
<i>m</i> ₁₄	
m_{15}	

Approach

• Choose Q_i

Approach

• Choose Q_i

20		102
	m_0	
	<i>m</i> ₁	
	<i>m</i> ₂	1
	<i>m</i> ₃	
	m ₄	1
	<i>m</i> ₅	
	<i>m</i> ₆	1
	<i>m</i> ₇	
	m ₈	1
	m ₉	1
	<i>m</i> ₁₀	
	<i>m</i> ₁₁	1
	<i>m</i> ₁₂	
2	<i>m</i> ₁₃	
	<i>m</i> ₁₄	
	<i>m</i> ₁₅	

	Q12
	Q ₁₃
	<i>Q</i> ₁₄
	<i>Q</i> 15
m_0	Q16
<i>m</i> ₄	Q ₁₇
<i>m</i> 8	Q ₁₈
<i>m</i> ₁₂	Q19
m_1	Q ₂₀
<i>m</i> ₅	Q ₂₁
<i>m</i> 9	Q22
<i>m</i> ₁₃	Q23

New Method

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

	<i>m</i> 0	
	<i>m</i> ₁	
	<i>m</i> ₂	
	<i>m</i> ₃	
	<i>m</i> ₄	
	<i>m</i> 5	
	<i>m</i> ₆	
	<i>m</i> ₇	
	<i>m</i> 8	
	<i>m</i> 9	
e C	<i>m</i> ₁₀	
	<i>m</i> ₁₁	
	<i>m</i> ₁₂	
	<i>m</i> ₁₃	
e. 	m_{14}	
	<i>m</i> ₁₅	

 mo	-
 1110	9
m_4	
 mo	
1118	
m_{12}	
 m	
m	
m_5	
mg	
m	
1113	

• Choose the end of the first round.

16

18

19

- Choose m_i to satisfy both the conditions.
- Fill the first round.

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

<i>m</i> 0	
 m_1	٦
m ₂	٦
m ₃	٦
<u>m</u> 4	٦
<i>m</i> 5	٦
m ₆	٦
m ₇	٦
m ₈	٦
<i>m</i> 9	1
m_{10}	٦
<i>m</i> ₁₁	٦
<i>m</i> ₁₂	٦
<i>m</i> ₁₃	٦
<i>m</i> ₁₄	٦
<i>m</i> ₁₅	٦

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

<i>m</i> 0	٦
<i>m</i> ₁	
<i>m</i> ₂	
<i>m</i> 3	
<i>m</i> 4	
 <i>m</i> ₅	
<i>m</i> ₆	
<i>m</i> ₇	
<i>m</i> 8	
m_9	٦
<i>m</i> ₁₀	
<i>m</i> ₁₁	
<i>m</i> ₁₂	
<i>m</i> ₁₃	
<i>m</i> ₁₄	
<i>m</i> ₁₅	

 mo
 m_4
<i>m</i> 8
<i>m</i> ₁₂
<i>m</i> ₁
m_5
<i>m</i> 9
m_{13}

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

m_0	
<i>m</i> 4	
<i>m</i> 8	
m_{12}	
m_1	
<i>m</i> 5	
<u>m</u> 9	
<i>m</i> ₁₃	

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

 12
<i>m</i> 0
<i>m</i> ₁
<i>m</i> ₂
<i>m</i> ₃
<i>m</i> ₄
<i>m</i> 5
<i>m</i> ₆
<i>m</i> ₇
<i>m</i> 8
<u>m</u> 9
<i>m</i> ₁₀
<i>m</i> ₁₁
<i>m</i> ₁₂
<i>m</i> ₁₃
<i>m</i> ₁₄
<i>m</i> ₁₅

mo	
 m	
 m _o	
<i>m</i> ₁₂	
 <i>m</i> ₁	
<i>m</i> 5	
m ₉	
<i>m</i> ₁₃	

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

	<i>Q</i> ₁₂
	<i>Q</i> ₁₃
	Q_{14}
	<i>Q</i> 15
<u>m</u> 0	Q_{16}
<i>m</i> ₄	Q ₁₇
<u>m8</u>	Q_{18}
<i>m</i> ₁₂	Q19
m_1	Q ₂₀
<i>m</i> ₅	Q ₂₁
m ₉	Q22
<i>m</i> ₁₃	Q23

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

<i>m</i> 0	
m_1	
<u>m</u> 2	
<u>m</u> 3	
<i>m</i> ₄	
<i>m</i> 5	
<i>m</i> 6	
<i>m</i> ₇	
<u>m8</u>	
<u>m</u> 9	
<i>m</i> ₁₀	
<i>m</i> ₁₁	
<i>m</i> ₁₂	
<i>m</i> ₁₃	
<i>m</i> ₁₄	
<i>m</i> ₁₅	

- Choose the end of the first round.
- Choose m_i to satisfy both the conditions.
- Fill the first round.

	m_0	
	<i>m</i> ₁	
	<i>m</i> ₂	
	m ₃	
	<i>m</i> ₄	
	<i>m</i> 5	
	m ₆	
	<i>m</i> ₇	
	<i>m</i> 8	
	<i>m</i> 9	
	<i>m</i> ₁₀	
	<i>m</i> ₁₁	
	<i>m</i> ₁₂	
	<i>m</i> ₁₃	
	<i>m</i> ₁₄	
5	<i>m</i> ₁₅	

Q_4
Q_{-3}
Q_2
Q_{-1}
Q_0
Q_1
Q_2
Q_3
Q_4
Q_5
Q_6
Q_7
Q_8
Q_9
<i>Q</i> ₁₀
Q_{11}
Q ₁₂
Q ₁₃
<i>Q</i> ₁₄
Q ₁₅

3	m ₀	
	<i>m</i> ₄	
2	<i>m</i> 8	
	<i>m</i> ₁₂	
	m_1	
	<i>m</i> ₅	
	<i>m</i> 9	
35 	<i>m</i> ₁₃	

	<i>m</i> 0	٦
	m_1	
	m_2	٦
	<i>m</i> 3	
	<i>m</i> ₄	٦
	<i>m</i> 5	٦
	m ₆	٦
	<i>m</i> 7	٦
	<i>m</i> 8	٦
ŝ.	m ₉	٦
	<i>m</i> ₁₀	
	<i>m</i> ₁₁	٦
	<i>m</i> ₁₂	
	<i>m</i> ₁₃	٦
	<i>m</i> ₁₄	
	<i>m</i> ₁₅	

	Q ₁₂
	Q ₁₃
	<i>Q</i> ₁₄
	Q ₁₅
<i>m</i> ₀	Q ₁₆
<i>m</i> ₄	Q ₁₇
<i>m</i> 8	<i>Q</i> ₁₈
<i>m</i> ₁₂	Q19
<i>m</i> ₁	Q ₂₀
<i>m</i> 5	Q ₂₁
<i>m</i> 9	Q22
<i>m</i> ₁₃	Q22

Choose the end of the message to be fixed.
Here t=2.

m ₀	٦
m_1	
<i>m</i> 2	٦
m ₃	٦
m_4	٦
<i>m</i> 5	
<i>m</i> 6	٦
m7	٦
<i>m</i> 8	
<u>m</u> 9	٦
m_{10}	٦
m_{11}	٦
m_{12}	٦
<i>m</i> ₁₃	
<i>m</i> ₁₄	
<i>m</i> ₁₅	

	<i>Q</i> ₁₂
	<i>Q</i> ₁₃
	<i>Q</i> ₁₄
	Q ₁₅
<i>m</i> ₀	Q ₁₆
<i>m</i> ₄	Q ₁₇
<i>m</i> 8	Q ₁₈
<i>m</i> ₁₂	Q ₁₉
<i>m</i> ₁	Q ₂₀
<i>m</i> 5	Q ₂₁
<i>m</i> 9	Q ₂₂
<i>m</i> ₁₃	Q23

2) Choose the values Q_{12-t} , Q_{13-t} , Q_{14-t} , Q_{15-t} such that it satisfies the conditions. Here we choose the values Q_{10} , Q_{11} , Q_{12} , Q_{13} .

	_
m_0	
<i>m</i> ₄	
<i>m</i> 8	
<i>m</i> ₁₂	
m_1	
<i>m</i> ₅	
<u>m</u> 9	
<i>m</i> ₁₃	

3) Compute Q_{16-t} . Here we compute Q_{14} .

	mo
	<i>m</i> ₁
	<i>m</i> ₂
0	<u>m</u> 3
	m ₄
5	<i>m</i> ₅
	m ₆
	m ₇
2	<u>m</u> 8
	<u>m</u> 9
	<i>m</i> ₁₀
	<i>m</i> ₁₁
	<i>m</i> ₁₂
	<i>m</i> ₁₃
	m ₁₄ 8
	m_{15}

	Q ₁₂
	Q ₁₃
	<i>Q</i> ₁₄
	Q ₁₅
<i>m</i> 0	Q16
<i>m</i> ₄	Q ₁₇
<i>m</i> 8	Q ₁₈
<i>m</i> ₁₂	Q19
m_1	Q ₂₀
<i>m</i> 5	Q ₂₁
<i>m</i> 9	Q22
<i>m</i> ₁₃	022

4) Re-compute Q_{12-t} . Check if condition on Q_{12-t} holds or not. If it does not hold, choose another set of values for Q_{12-t} , Q_{13-t} , Q_{14-t} , Q_{15-t} .

	<i>Q</i> ₁₂
	Q ₁₃
	<i>Q</i> ₁₄
	<i>Q</i> 15
<i>m</i> ₀	Q ₁₆
<i>m</i> ₄	Q ₁₇
<i>m</i> 8	<i>Q</i> ₁₈
<i>m</i> ₁₂	<i>Q</i> ₁₉
<i>m</i> ₁	Q ₂₀
<i>m</i> 5	Q ₂₁
<i>m</i> 9	Q22
<i>m</i> ₁₃	Q22

5) Compute the values Q_{17-t} to Q_{16} Check conditions on them. If it does not hold, go to step 2. Here we compute Q_{15} .

~

6) Compute Q_{16} from m_0 . Re-compute m_0 from Q_{16} . Compute Q_0 from $m_{0.}$ Conditions on Q_0 and Q_{16} should hold true

<i>m</i> 0	1
<i>m</i> 1	
m_2	
<i>m</i> ₃	
m_4	
<i>m</i> 5	
<i>m</i> ₆	
<i>m</i> ₇	1
<i>m</i> 8	1
<i>m</i> 9	
<i>m</i> ₁₀	
<i>m</i> ₁₁	1
<i>m</i> ₁₂	
<i>m</i> ₁₃	1
<i>m</i> ₁₄	
<i>m</i> ₁₅	

	<i>m</i> 0	
	<i>m</i> ₄	
	<i>m</i> 8	
2	<i>m</i> ₁₂	
	<i>m</i> ₁	
5:	m ₅	
	<i>m</i> 9	
	<i>m</i> ₁₃	

7) Fill the first round.

	<i>m</i> 0	
	<i>m</i> ₄	1
	<i>m</i> 8	
2 0	<i>m</i> ₁₂	Ì
	m_1	
5:	<i>m</i> 5	1
	<i>m</i> 9	
	<i>m</i> ₁₃	

8) Fill the first round.

9) Compute Q_{17} from m_4 . Re-compute m_4 from Q_{17} . Compute Q_4 from m_4 .

	<i>m</i> 0	
	m_1	
	<i>m</i> ₂	
	<i>m</i> 3	
	<i>m</i> ₄	
	<i>m</i> 5	
	<i>m</i> ₆	
	<i>m</i> ₇	
	<i>m</i> 8	
	<i>m</i> 9	
р	<i>m</i> ₁₀	
	<i>m</i> ₁₁	1
5	<i>m</i> ₁₂	
8	<i>m</i> ₁₃	
	<i>m</i> ₁₄	
	<i>m</i> ₁₅	

<i>m</i> 0	
<i>m</i> ₄	
<i>m</i> 8	-3
<i>m</i> ₁₂	1
m_1	
<i>m</i> 5	1
<i>m</i> 9	
<i>m</i> ₁₃	

10) Fill the first round.

	<i>m</i> 0	
	<i>m</i> ₄	
8	<i>m</i> 8	
	<i>m</i> ₁₂	
č	m_1	
	<i>m</i> ₅	
	m ₉	
1	<i>m</i> ₁₃	

~

11) Fill the first round.

~

12) Compute Q_{18} from m_8 . Re-compute m_8 from Q_{18} . Compute Q_8 from $m_{8.}$

<i>m</i> 0	
<i>m</i> ₁	
<i>m</i> ₂	
<i>m</i> 3	
<i>m</i> ₄	
<i>m</i> 5	
<i>m</i> 6	
<i>m</i> 7	
<i>m</i> 8	
 m ₉	1
<i>m</i> ₁₀	1
<i>m</i> ₁₁	1
<i>m</i> ₁₂	1
<i>m</i> ₁₃	1
<i>m</i> ₁₄	
<i>m</i> ₁₅	

1		
	<i>m</i> 0	
	<i>m</i> 4	
	<i>m</i> 8	
	<i>m</i> ₁₂	
	<i>m</i> ₁	
	m_5	Į.
	<i>m</i> 9	
	<i>m</i> ₁₃	

13) Fill the first round.
Choosing a part of the message

<i>m</i> 0	
<i>m</i> ₄	
<i>m</i> 8	
<i>m</i> ₁₂	
<i>m</i> ₁	
m_5	
<i>m</i> 9	
<i>m</i> ₁₃	

14) Fill the first round.

Choosing a part of the message

c
<i>m</i> 0
<i>m</i> ₁
<i>m</i> ₂
<i>m</i> ₃
<i>m</i> ₄
<i>m</i> 5
<i>m</i> ₆
m ₇
m ₈
m ₉
<i>m</i> ₁₀
<i>m</i> ₁₁
<i>m</i> ₁₂
<i>m</i> ₁₃
<i>m</i> ₁₄
<i>m</i> ₁₅

	<i>m</i> 0	
	<i>m</i> ₄	
	<i>m</i> 8	
5	<i>m</i> ₁₂	J
8	<i>m</i> ₁	
	m_5	
	m_9	
	<i>m</i> ₁₃	

15) Compute Q_i from p_c (19) and to p_v (24) using the previous Q_i 's. If the condition on Q_i does not satisfy then go to step 13.

16) Using tunnels, find a message which satisfies all Q_i's upto the end of the round.

Message Freedom

- Using this approach, one can choose:-
 - last three message words in a one-block MD4 collision
 - three specific message words on a two block MD5 collision.
- Collision Search
 - First block computed only once: include '<' and '@'.
 - For the second block:-
 - Avoid 4 characters (>, p₀, p₁, p₂)
- We can recover 3 characters of the password.

Why only 3 words can be recovered in MD5?

- For MD5, the Wang's path uses a message difference in m₁₄.
- In order to learn ith password character, we need to generate a collision where we fix the last i+1 characters (three characters of the password and '>')
- Due to the message difference we cannot modify the message m_{14} and hence can only recover 3 characters of a password.

Attack Complexity

- Assume, password is 8 char. long and each char. has 6 bits of entropy.
- Generate 3*2⁵ collisions and wait for about 3*2⁶
 identifications.
- If each collision takes 5 sec. to generate, then attack will take about 3 hours.

Note : This is not clearly understood .

APOP Attack in practice

- More than 10% use POP ,out of which about 4% use APOP (not a negligible number)
- Some mail user agents give the freedom to select the authentication method to the server – Attacker can claim to support only APOP
- Colliding messages cannot be found for ASCII but most of the mail clients are non RFC-compliant and only check for only condition 1 & 3 on slide 5

Clients	Status
Netscape/ Thunder bird / Mozilla	Attack works
Qualcomm Eudora	Attack works
Mutt	Attack works
Novell Evolution	Attack works
Fetchmail	Attack works
Kmail	Attack Fails
Microsoft Exchange/Outlook / Outlook express	No APOP support
Apple Mail	No APOP support

References

- Slides Message Freedom in MD4 and MD5 Collisions.
 Application to APOP, Gaëtan Leurent
- Ch5, Applied Cryptanalysis Breaking ciphers in real world, Mark Stamp and Richard M. Low
- Hashing in Computer Science , Alan G.Konheim
- Finding MD5 Collisions on a Notebook PC Using Multimessage Modifications, Klima
- Tunnels in Hash Functions: MD5 Collisions Within a Minute , Klima
- Characterizing Padding Rules of MD Hash Functions, Preserving Collision Security, Mridul Nandi
- Lecture slides of IT 325, Winter 2012